Sesión 3A1. CIRCUITOS ACTIVOS DE MICROONDAS
ANALISIS Y DISEÑO DE UN OSCILADOR EN BANDA V

I. Corbella, J. Salazar.
E.T.S.I. Telecomunicación de Barcelona, U.P.C.
Dpto. Teoría de la Señal y Comunicaciones. Grupo A.M.R.
Tel. (93) 401.68.49

ABSTRACT.
In this paper the analysis and design of an oscillator in V band is presented. Taking advantage of a coaxial oscillation, some results related with frequency stability have been obtained. A special attention has been paid in the design of the RF choke.

INTRODUCCION.
Se presenta en esta comunicación el análisis y diseño de un oscilador en banda V con tecnología de poste en guía. Dicha banda comprende el margen de frecuencias desde los 50 GHz hasta los 75 GHz, que en términos de longitudes de onda se traduce en valores de 4 mm a 6 mm. Se requerirá una gran precisión en el diseño de cada una de las piezas del oscilador, puesto que en ellas intervienen dimensiones del orden de $\lambda/2$ y $\lambda/4$.

Como soporte del diseño se han utilizado dos programas, el denominado Microwave Design System (MDS), y otro realizado a partir de las expresiones obtenidas por R. L. Eisenhart y P. J. Khan [1], y J. S. Joshi y J. A. F. Cornick [2], [3], [4]. Este último programa permite el análisis de estructuras montadas en guía de onda utilizando el método de campos electromagnéticos inducidos.

Se presentan una serie de resultados preliminares obtenidos con un prototipo de oscilador construido, en el cual la frecuencia de oscilación estaba determinada por la cavidad coaxial formada en el poste de alimentación.

DISEÑO BASICO
En la fig. 1 se puede observar un corte longitudinal del oscilador realizado. La guía de onda utilizada ha sido la WR-15 (3.8 mm ancho, 1.9 mm alto) y la cavidad resonante es de dimensiones reducidas (3.2 mm ancho, 1.25 mm alto). El diodo utilizado es el MA-49182-138 de M/A-COM, y ha sido montado en la base de la cavidad, en la cual ha sido practicado un rebaje con la finalidad de que sea el propio encapsulado del diodo el que actúe de base de la cavidad. El diodo es alimentado por medio de un poste de 0.9 mm
de diámetro. La pared superior de la cavidad está formada por el choque de RF. El conjunto poste más choque presiona al diodo mediante el muelle superior que hace tope con la pieza de sujeción de PVC. La longitud de la cavidad es variable mediante el posicionamiento del corte móvil, el cual permite el ajuste de la frecuencia de oscilación.

La razón de utilizar una cavidad de dimensiones reducidas viene impuesta por la necesidad de alejar al máximo todos los modos superiores de oscilación de la cavidad, siendo el modo de operación el TE_{101}.

DISEÑO DEL CHOQUE.

La función básica del choque es la de proporcionar el cortocircuito a RF en la pared superior de la cavidad así como evitar la pérdida de potencia en la señal de RF a través del poste de alimentación hacia el exterior.

La forma de implementar un choque consiste en realizar tramos de línea coaxial de baja/alta/baja impedancia. Dos estructuras son las más usadas y comentadas en la bibliografía, la que tiene sus tres tramos de longitud $\lambda_0/4$ [5], y la que tiene los tramos de longitudes $\lambda_0/12-\lambda_0/4-\lambda_0/12$ [6].

Fig. 2 Comportamiento de los choques. (a) Configuración en $\lambda_0/4-\lambda_0/4-\lambda_0/4$. (b) Configuración en $\lambda_0/12-\lambda_0/4-\lambda_0/12$.

En la fig. 2 se muestra el resultado de las simulaciones realizadas con el MDS, en las cuales se ha considerado el tramo de poste que va desde la pared superior de la cavidad hacia el exterior.

Dichas gráficas demuestran que la estructura que mejor se comporta es la que tiene
las tres secciones en tramos de $\lambda_o/4$. Sin embargo, si únicamente se tienen en cuenta las tres secciones baja/alta/baja, la estructura $\lambda_o/12-\lambda_o/4-\lambda_o/12$ es la que presenta una mayor robustez frente a errores en el posicionamiento debido a tolerancias mecánicas.

La estructura superior del choque vino forzada por limitaciones macánicas, y en vista de dichas simulaciones se decidió adoptar la configuración en $\lambda_o/4-\lambda_o/4-\lambda_o/4$.

ANÁLISIS DE LA OSCILACIÓN COAXIAL.

Puesto en marcha el oscilador, se observó que la frecuencia de oscilación se encontraba entre los 52 GHz y los 56 GHz, dependiendo de la posición del corto y de la tensión de alimentación, con una potencia de oscilación de 8 a 12 dBm en dicho margen de frecuencias.

Además se observó, que cuando se subía el diodo, la frecuencia de oscilación aumentaba hasta llegar a los 65 GHz para después volver a descender hasta llegar a los 55 GHz. Se obtuvo alrededor de los 60 GHz una potencia máxima de oscilación de 15 dBm, siendo la máxima que podía dar el diodo de 17 dBm (50 mW). Se pudo comprobar también que el corto móvil únicamente servía para ajustar de una manera suave la frecuencia de oscilación. Con todos estos efectos, la presencia de una oscilación coaxial era clara.

![Fig. 3 Comportamiento de la cavidad coaxial.](image)

Mediante el MDS se simuló toda la estructura coaxial, aproximando la cavidad en guía por otro tramo coaxial, y se comprobó que efectivamente al variar el diodo en altura, el coeficiente de reflexión visto por el diodo se desplazaba en sentido antihorario, ver fig. 3. Si el primer valor en el sentido del desplazamiento, correspondía a una baja frecuencia, al desplazarse la curva, para un valor dado de la impedancia del diodo, el punto de intersección entre las curvas de la línea de carga y la línea del dispositivo, se efectuará a una frecuencia más elevada.

RESULTADOS.

Una de las medidas más interesantes a realizar era la que tenía que ver con la estabilidad en frecuencia del oscilador. Para la obtención de la gráfica de la fig. 4 se tuvo al oscilador en funcionamiento más de una hora, y después se midió dicha gráfica durante una media hora más de funcionamiento. A partir de dicha gráfica observamos un $\Delta f=2$ MHz que para la frecuencia de 59.97 GHz representa una $\delta=3.335\cdot10^{-3}$. Se realizaron también medidas de la variación de la frecuencia de oscilación con el tiempo hasta que se estabilizaba, ver fig. 5, en la cual se observó que a mayor tensión de polarización, mayor
potencia disipada por el diodo y más se calentaba la cavidad, con lo que la deriva en temperatura de la frecuencia de oscilación era mayor. Como muestra la gráfica, transcurridos unos 20 minutos la frecuencia de oscilación ya se ha estabilizado.

La **fig. 6** representa la gráfica de la frecuencia de oscilación en función de la tensión de polarización.

![Diagrama de Deriva del Oscilador](image1)

Fig. 4 Deriva del oscilador una vez estabilizado.

![Diagrama de Frecuencia de Oscilación](image2)

Fig. 5 Frecuencia de oscilación en función del tiempo.
CONCLUSION.

Pese a ser resultados obtenidos debido a una oscilación producida en la cavidad coaxial del poste de alimentación, éstos han sido satisfactorios, especialmente el que muestra la deriva en frecuencia que tiene el oscilador cuando se encuentra ya estabilizado.

En relación a la cavidad coaxial y a su frecuencia de oscilación aparecida, ésta ha sido eliminada realizando una cavidad con una altura mayor. Concretamente, se ha montado el diodo en una cavidad con la misma anchura y altura que la guía de onda utilizada, la WR-15.

REFERENCIAS.

Modulador ASK a 60 GHz en fin-line

J. de Mora, I. Corbella
E.T.S.I. de Telecomunicación de Barcelona, U.P.C.
Dpto. Teoría de la Señal y Comunicaciones. Grupo A.M.R.
Apdo. 30.002, 08080 Barcelona
Telf. (93) 401 68 49

Abstract

This paper describes the design and construction of a 60 GHz PIN-Switch. It reviews the way two diodes (or more than two) improve both the insertion loss and the isolation, and shows the results of the measurements that have been made once built. This study belongs to a project for an indoor communication system at 60 GHz.

Introducción

El enorme crecimiento actual de las comunicaciones móviles en todo el mundo, así como el previsible incremento del número de servicios y de la calidad de estos, implica la necesidad de buscar nuevas frecuencias. Especial interés pueden tener las milimétricas por estar en fase de experimentación (y por lo tanto sin asignar), y por el gran ancho de banda que permitirían.

El grupo AMR se decantó por las comunicaciones móviles en interiores, menos estudiadas, y en concreto por la posible aplicación de los 60 GHz, frecuencia de absorción del oxígeno, para este tipo de sistemas. La ventaja aportada por los 60 GHz sería precisamente su corto alcance, permitiendo una gran reutilización de canales en un sistema celular.

Un objetivo básico al iniciar el estudio de la banda cercana a los 60 GHz consiste en adquirir la experiencia tecnológica necesaria para construir subsistemas a frecuencias milimétricas, y en nuestro caso en banda V (50-75 GHz).

Se decidió empezar realizando un Modulador ASK, como primer subsistema a 60 GHz a construir en el departamento, por su menor complejidad.

Tecnología

A frecuencias milimétricas la línea de transmisión óptima es la guía de ondas, por
sus bajas pérdidas, sin embargo la mecanización precisa que requiere, así como la dificultad para incorporar elementos activos empuja a considerar otras alternativas. En lo que respecta a la microstrip, que es la línea más habitual en microondas, a frecuencias tan elevadas como los 60 GHz en principio presentará unas pérdidas importantes, por lo que tampoco parece muy adecuada. Finalmente, como compromiso entre estos dos tipos de líneas enunciadas, se decidió hacer un diseño en fin-line, que nació en su día para combinar la facilidad de construcción de la microstrip y evitar sus problemas de radiación a frecuencias milimétricas.

La fin-line es una estructura de tecnología cuasi-plana: el circuito se diseña en una slot-line con procedimientos fotolitográficos usados en microstrip, y posteriormente se introduce en el plano E de una guía rectangular.

Modulador ASK en fin-line

La implementación de un modulador ASK (es decir un conmutador) en fin-line es muy sencilla. Basta con colocar un diodo PIN en derivación en la fin-line para controlar la potencia de RF que pasa, según la corriente de polarización del diodo. Para entender el funcionamiento básico de este conmutador, basta con saber que si polarizamos el diodo en directa, resultará ser un cortocircuito para la RF, que no pasará (estado OFF); en cambio, si lo polarizamos en inversa, la RF verá un circuito abierto y se transmitirá en su casi totalidad (estado ON). De esta manera, utilizando como señal de control la que polariza el diodo podemos alternar dos estados posibles: corte y transmisión.

Este tipo de modulador, en el que el estado OFF se consigue ofreciendo una impedancia muy baja (asimilable a un cortocircuito) de tal manera que la señal de RF se refleja, es lo que se denomina un modulador por reflexión. Esto significa que deberá ir precedido normalmente por un aislador para evitar problemas de desadaptación.

Elección del PIN

El modulador descrito se puede modelar como una línea de transmisión (la fin-line, cuyas características se han determinado con un programa específico para fin-lines de ranura estrecha [1]), con una impedancia en paralelo intercalada en la línea, de valor variable (el diodo PIN). Para elegir el diodo PIN adecuado se busca que la resistencia que presenta en polarización directa sea pequeña (del orden de algunos ohmios), y sobre todo que la capacidad en inversa (básicamente la capacidad de la unión, \(C_\) sea suficientemente baja para poder considerarla un circuito abierto a la frecuencia de interés (los 60 GHz). Esto supone usar diodos beam-lead con capacidades menores que 0,03 pF. Concretamente se ha utilizado el MA/COM 4P800.

Mejora de prestaciones con más de un diodo

Dado que las prestaciones alcanzables con un solo diodo no resultaban suficientemente buenas, se decidió usar dos en cascada. De esta manera no solo se consigue mejorar el aislamiento, como con dos conmutadores en cascada, sino que se demuestra que también se consigue mejorar las pérdidas de inserción [2], al constituirse el circuito con dos diodos como una red de adaptación clásica: el doble sintonizador.
Al utilizar dos diodos PIN en cascada el parámetro adicional que aparece respecto a un solo diodo es la separación L entre estos (Fig.1), que habrá que determinar de tal forma que el comportamiento del modulador sea óptimo.
Basándose en curvas de diseño de conmutadores [2], se pueden hacer algunas afirmaciones generales sobre las variables a optimizar.
El aislamiento óptimo (máximo) siempre se conseguirá para un espaciado de λ/4, y es poco sensible a las variaciones del espaciado. En cambio, la separación que minimiza las pérdidas de inserción depende fuertemente tanto de Cj como de la frecuencia; pero en cualquier caso va disminuyendo al aumentar la frecuencia.

En definitiva, nos hemos preocupado simplemente de optimizar las pérdidas de inserción (estado ON del conmutador), lo que hemos realizado empleando dos métodos. El primer método consiste en conseguir una red adaptada (el circuito obtenido es un doble sintonizador), de tal manera que teóricamente se podrían anular completamente las pérdidas de inserción, y se puede conseguir simplemente con una carta de Smith.
El segundo método es una simulación por ordenador, mediante el MDS (Microwave Design System), que permite analizar circuitos de microondas con elementos activos (los diodos PIN en nuestro caso), definidos mediante sus circuitos equivalentes (Fig.2).

Ambos métodos coincidieron perfectamente, resultando una distancia entre los dos diodos de 0,55 mm.

Realización práctica

Se ha construido el circuito en slot-line a partir de una máscara, usando técnicas fotolitográficas habituales, empleando el sustrato Cu clad 217.
Como transición de fin-line a guía se emplean tapers exponentiales de 1,5λ de longitud que se han conseguido con un programa desarrollado en el departamento, dejando una zona intermedia uniforme de algo más de los 0,55 mm mínimos.
El ancho de la ranura se ha tomado de 0,1 mm, en el límite de tolerancia del laboratorio. Se ha utilizado como guía una caja de Meier [3] mecanizada de forma muy precisa y con algunas adaptaciones destinadas a facilitar la precisión en la inserción de la slot-line y a un mejor acabado incluyendo el conector de polarización. Se ha de emplear un aislante para evitar que ambas aletas estén cortocircuitadas por la caja (Fig.3).

Respuesta del modulador construido

Para caracterizar el modulador se ha empleado como fuente un oscilador a 60 GHz capaz de proporcionar unos 15 dBm de salida, y un detector en banda V de gran sensibilidad, además de algunos subsistemas adicionales en banda V.
Las medidas modulando en continua han sido:

Pérdidas de inserción \(IL = 1,7 \, \text{dB} \)
Aislamiento \(ISOL = 14,2 \, \text{dB} \)

De esta manera se consigue una profundidad de modulación de unos 12,5 dB, comparable a otros moduladores del mismo tipo en fin-line a frecuencias inferiores [4], y no muy lejana de las características de moduladores comerciales en esta banda.
También se han hecho unas primeras medidas en conmutación, con un analizador de espectros, puesto que el detector disponible no parece permitir un gran ancho de banda de post-detección, estimando de esta forma que la modulación máxima sería del orden de 100 MHz.

Conclusiones

Sobre la gráfica de la respuesta (Fig. 4), se comprueba que el modulador dispone de dos estados claros, con unas pérdidas de inserción en ON de 1,7 dB, y un aislamiento en OFF de algo más de 14 dB, lo que lo hace apto para una modulación ASK binaria. Sin embargo, polarizando en la zona intermedia se consigue un atenuador variable dentro de esos márgenes de atenuación.
Como alternativas para mejorar el aislamiento, que sería la característica más crítica, habría que utilizar otros PIN con una resistencia R_s menor, aumentar el número de diodos, y en todo caso probar con algún aislante resistivo a frecuencias milimétricas para evitar propagaciones de modos parásitos.
En cualquier caso, se ha comprobado la realizabilidad a frecuencias tan elevadas como los 60 GHz, de un modulador ASK sencillo con unas prestaciones suficientes, usando una estructura fin-line.

Referencias

Fig. 1 Fin-line con 2 PIN

Fig. 2 Modelo del MA 4P800

Fig. 3 Sección del montaje completo

Fig. 4 Respuesta medida del PIN-Switch
Criterios y métodos de reducción del ruido de fase en osciladores de microondas con MESFET.

I. Corbella, I. M. Carrasco
G. A. M. R. Dept. Teoría Senyal i Comunicacions
E. T. S. E. Telecomunicació de Barcelona

Abstract. This paper gives several building criteria for the design of microwave oscillators with MESFET (MESFET-MWO) in order to achieve low phase noise.

From device low frequency noise model and identification of phase noise mechanisms generation and sources in MESFET-MWO, a novel expression of *1 Hz single side noise power to carrier power relation* or \(\Phi(t) \) function is obtained.

A low cost X band oscillator with high efficiency and medium power is built to prove the methods of phase noise reduction derived of that expression.

The phase noise measured of the built oscillator allows us to doubt of the device noise model used.

1. Modelo de Ruido. Base Teórica. El modelo circuital de ruido simplificado de un MESFET es el expuesto en la figura 1 (recuadro de línea punteada). El ruido presente es modelado en forma de un generador equivalente de ruido \(\varepsilon_R(t) \) cuya densidad espectral de potencia sigue una característica inversamente proporcional a la frecuencia (ruído Flicker o \(1/f \)) [1], [6] con lo que la potencia de ruido se concentra en la banda de frecuencias más bajas (BF).

La aparición de este ruido de baja frecuencia (BF) en las inmediaciones de la frecuencia de oscilación \(f_0 \) (en forma de bandas colaterales de ruido AM y FM) es consecuencia de la intermodulación entre \(f_0 \) y dicho ruido BF dado el carácter inherentemente no lineal de un oscilador. Este fenómeno es denominado habitualmente en la literatura como Upconversion [2].

A partir de la adecuada manipulación de la expresión clásica de la relación *Potencia de ruido en una banda de 1 Hz a f Hz de la frecuencia de oscilación a Potencia de frecuencia de oscilación* (expresión comúnmente notada como \(\Phi(t) \)) obtenida por Kurokawa en [3], junto con las aportaciones de Debney&Joshi [4] y Grafeuill et al. [5] se obtiene la expresión para \(\Phi(t) \), siguiente [6]:

\[
\Phi(f) = K_1 \left(\frac{S_g(f_0-f)+S_g(f_0+f)}{Q_L^2} \right) \left(\frac{f_0}{f} \right)^2 \left(1 + \frac{(s\cdot u + r\cdot v)^2}{(r\cdot u - s\cdot v)^2} \right) \quad \text{con} \quad S_g = \frac{K_2}{f} \left(\frac{V_R}{L\cdot Z} \right) \quad \text{(Eq. 1)}.
\]
Donde:
- f_0 es la frecuencia de oscilación.
- f es la frecuencia offset a la que se mide el ruido.
- K_1 y K_2 son constantes de proporcionalidad independientes de la frecuencia.
- Q_L es el factor de calidad cargado del oscilador.
- s, r, t, u son parámetros dependientes de las impedancias de dispositivo y carga.

$$
 s = \frac{A_0}{R_L} \frac{\partial R_D}{\partial A} \\
 r = \frac{A_0}{R_L} \frac{\partial X_D}{\partial A} \\
 u = \frac{f_0}{R_L} \frac{\partial R_L}{\partial f} \\
 t = \frac{f_0}{R_L} \frac{\partial X_L}{\partial f}
$$

Con:
- A_0 la amplitud de oscilación.
- R_D y R_L resistencia de dispositivo y carga respectivamente.
- X_D y X_L reactancia de dispositivo y carga respectivamente.
- V_p tensión de Pinch-off.
- L y Z la longitud y anchura del canal bajo la puerta respectivamente; $L \cdot Z$ es pues el área del canal bajo la puerta.
- $S_e(t)$ la densidad espectral de potencia del generador equivalente de ruido $e_e(t)$.

La minimización de esta expresión reducirá el ruido de fase del oscilador.

Métodos de reducción del ruido de fase y aplicación a un diseño. Para comprobar la validez del modelo y de los métodos de reducción de ruido de fase que se van a proponer, se implementó un oscilador con MESFET en banda X, montando el transistor en línea microstrip y realimentandolo en configuración serie (fig.2a). El proceso de diseño implicaba la modelización circuital de un resonador dieléctrico en reflexión, la obtención de los parámetros de Scattering del transistor con un analizador de redes (HP8510B) y la optimización del diseño con software de simulación de circuitos de microondas (HP-MDS), se describe en la referencia [6]. El esquema del circuito puede verse en la figura 2b.

De la observación de la ecuación 1 se pueden establecer los siguientes criterios para minimizar el ruido de fase:

2.1 Elevado factor de calidad cargado. Este criterio, ampliamente utilizado en todo tipo de osciladores, se aplicó en este diseño usando como estructura resonante del oscilador, un resonador dieléctrico acoplado a la línea microstrip conectada a la puerta del MESFET (fig. 2b).

2.2 Impedancia de carga RF adecuada. Propuesto inicialmente por Kurokawa [3] consiste en que la línea de dispositivo y la de carga sean perpendiculares en el plano complejo. Es fácil demostrar [6] que esta condición es equivalente a que el término su + rt de la ecuación 1 se anule.

2.3 Elección adecuada del dispositivo. Entre varios transistores MESFET, se elegirá aquel que presente menor valor de la expresión:

$$
\frac{V_p}{L \cdot Z}
$$
para así, de acuerdo con la ecuación 1, utilizar el dispositivo con un valor de densidad espectral de ruido de menor valor. Este criterio, no obstante, tiene las siguientes limitaciones: [5]

Un valor demasiado elevado de L disminuirá la frecuencia máxima de operación del dispositivo.

Un valor excesivo de Z disminuirá el valor de la transconductancia g_m del dispositivo y por tanto su ganancia unilateral, con lo que será difícil hacerlo oscilar.

2.4 Cargas de baja frecuencia adecuadas en puerta y drenador. Este es el sistema, a priori, más innovador de los expuestos. La influencia que el generador equivalente de ruido $e_r(u)$ tiene sobre la pureza espectral de la señal de oscilación puede reducirse, en principio, cargando la puerta del MESFET con una alta impedancia en baja frecuencia [7] ya que la tensión, hipotética, de ruido V_G (fig.1) resulta ser:

$$V_G = \frac{Z_T}{Z_T + Z_{BF}} \tag{2}$$

Esa alta impedancia en baja frecuencia en la puerta puede conseguirse intercalando una resistencia de elevado valor (cientos de Kohms) entre la fuente de alimentación que polariza la puerta del transistor y dicha puerta (fig.1). Esta resistencia no afecta apreciablemente a la corriente de polarización de puerta debido a la pequeña magnitud de dicha corriente. Un problema que se puede presentar es la oscilación en media-baja frecuencia (de KHz a algunos MHz) que esa resistencia puede provocar dada la alta ganancia que presentan los MESFETS a esas frecuencias.

2.5 Utilización de dobladores. La función $\delta(t)$ es proporcional al cuadrado de la frecuencia de oscilación, f_0, como puede verse en la ecuación 1, lo que sugiere que una manera de reducir el ruido de fase en 6 dB teóricos, sería diseñar el oscilador a frecuencia mitad y utilizar como frecuencia de salida el segundo armónico. El inconveniente de este sistema es que la potencia de un segundo armónico es sensiblemente inferior a la de un primer armónico aunque puede maximizarse, en el caso de un MESFET, polarizando éste con una tensión de puerta próxima a la de Pinch-off ya que la alinealidad del dispositivo es máxima para dicha polarización.

3. Resultados. El circuito oscilador finalmente construido presenta las características resumidas en la tabla siguiente y en la figura 3 (espectro del oscilador).

<table>
<thead>
<tr>
<th>Frecuencia de oscilación (1° armónico)</th>
<th>8.571 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia primer armónico</td>
<td>11 dBm</td>
</tr>
<tr>
<td>Potencia segundo armónico</td>
<td>-9 dBm</td>
</tr>
<tr>
<td>Polarización</td>
<td>$I_{DS} = 30 \text{ mA}$ $V_{DS} = 2 \text{ V}$</td>
</tr>
<tr>
<td></td>
<td>$V_{GS} = -0.8 \text{ V}$</td>
</tr>
</tbody>
</table>

TABLA I

El ruido de fase ha sido medido por el método de detección de fase [6], [8] con
el sistema de medida HP3048A [8]. Los resultados se muestran en las gráficas 4a y 4b. La figura 4a muestra el ruido de fase obtenido (\(\xi(t)\)) con una frecuencia offset entre 10 Hz y 40 MHz y como puede verse, la función sigue una característica inversamente proporcional al cubo de la frecuencia offset (1/f³) tal como predecía la ecuación 1.

La figura 4b muestra esa misma función en un margen más estrecho (10 Hz a 10 KHz) para poder apreciar con más detalle el margen de frecuencias donde el método de reducción de ruido de fase expuesto en el punto 2.4 debe ser efectivo.

El ruido de fase con alta y baja impedancia de BF en puerta es prácticamente idéntico en ambos casos lo que cuestiona la validez del modelo de ruido utilizado y pone en duda los resultados de Grafheuill et al que en [7] proponían un método de reducción del ruido de fase similar al de este trabajo. Dallas y Evererd en [9] explican los aparentemente buenos resultados de [7] por la eliminación de ruido AM convertido en ruido de fase que se producía en el experimento de [7].

Conclusiones. Se ha implementado un circuito oscilador siguiendo unos criterios deducidos de una expresión original de la función \(\xi(t)\) y del modelo de ruido del transistor MESFET. Algunos de esos criterios son utilizables en cualquier tipo de oscilador (2.1, 2.2 y 2.5) y otros son exclusivos de osciladores con MESFET (2.3 y 2.4).

El circuito oscilador implementado es compacto, de bajo coste y fácil realización. La eficiencia que se obtiene es alta con una potencia de señal media y el ruido de fase resultante se puede considerar bueno en comparación con circuitos similares presentados en la literatura.

Referencias.

Fig. 1 Modelo de ruido de baja frecuencia del MESFET.

Fig. 2a MESFET realimentado serie.

Fig. 2b Esquema del Oscilador.

Fig. 3 Espectro.

Fig. 4a $\phi(f)$ entre 10 Hz y 40 MHz.

Fig. 4b $\phi(f)$ entre 10 Hz y 1 KHz.
DISEÑO DE UN VCO EN BANDA ANCHA.

Victor Alexis Araña Pulido (*)
Blas Pablo Dorta Naranjo (**)

(*) E.T.S.I.Telecomunicación de Las Palmas
Dpto. Microelectrónica y Telecomunicación
Universidad de Las Palmas de Gran Canaria.

(**)E.T.S.I.Telecomunicación
Grupo de Microondas y Radar. Dpto. SSR
Universidad Politècnica de Madrid.

ABSTRACT

This paper presents a study based on Kotzebue’s embedding networks about wide-band VCO design. It will permit easily, with a small computer optimization program, to know the feedback network that we have to connect to the active device, optimizing as well parameters like: number of varactors, range of impedance variation in Smith's Chart, sensibility of the design under variations of impedance, output power, ripple of power and others.

INTRODUCCION

Cuando se quiere obtener un VCO de banda ancha que proporcione máxima potencia a la carga, solemos recurrir a un diseño tipo Kotzebue. Al querer implementar físicamente las impedancias que resultan del estudio, nos vemos en la necesidad de colocar dos o más varactores.

Ello conlleva un problema añadido al diseño en cuanto al ajuste y coste debido a la utilización de más de un varactor.

La presente comunicación nos dará a conocer un criterio de análisis diferente que nos facilite el diseño del VCO de banda ancha mediante un pequeño programa. Este estudio nos permitirá un diseño que entregue a la carga la máxima potencia posible, con rizado pequeño y empleo de un solo varicap de sintonía; así como la sensibilidad ante variaciones de impedancias y rango de variación de las mismas en la Carta de Smith, facilitando con ello su implementación física.

Problematίtica del diseño del VCO por Redes de Kotzebue

Una red de Kotzebue será una red de realimentaciό́n (fig.1) que permita entregar a la carga la máxima potencia.

Para un dispositivo no lineal, el problema de encontrar la condiciό́n bajo la cual la potencia liberada a una carga es mό́xima, es muy complejo como para permitir un tratamiento general. Sin embargo, esto es posible para aquellos donde los parámetros en gran señal que caracterizan al dispositivo activo, dependen sό́lo de la tensión de entrada [1]: amplitud V1 en la fig.2).
Aunque V_1 es fijado al comienzo del diseño del oscilador para que sea igual a la amplitud usada durante las medidas, el diseñador todavía tiene la libertad de elegir la tensión compleja V_2. Por consiguiente, es conveniente definir el ratio de tensión:

$$ A = \frac{V_2}{V_1} = A_r + jA_i $$

La elección de A determina la potencia de salida del dispositivo; y por eso, varias mallas, manteniendo A constante, proporcionan osciladores con la misma potencia liberada a la malla.

Esta correspondencia presenta una primera aproximación al diseño de osciladores basados en la especificación de A para maximizar la potencia liberada por el dispositivo activo con una polarización dada E_1, una tensión V_1 y frecuencia ω.

Diremos que una malla de Kotzebue en el diseño de osciladores, es aquella en la que, entregando al dispositivo activo la máxima potencia a la malla de realimentación ($A=A_{opt}$), sólo existe una carga en la malla que recibirá toda la potencia [3].

Si pretendemos diseñar un VCO que nos proporcione a la carga la máxima potencia entregada por el dispositivo activo en toda la banda, surge la posibilidad de emplear estas mallas de Kotzebue.

Ahora bien, consideremos la red de Kotzebue para un NEC 64535 con $V_1=2, V$ con realimentación paralelo en la banda 2-4 GHz dada por:

<table>
<thead>
<tr>
<th>Frec. GHz</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>1.0575</td>
<td>-0.2185</td>
<td>-0.4061</td>
<td>0.1595</td>
</tr>
<tr>
<td>3.0</td>
<td>0.1921</td>
<td>-0.4476</td>
<td>-0.4414</td>
<td>0.3302</td>
</tr>
<tr>
<td>4.0</td>
<td>-12818</td>
<td>-1.2780</td>
<td>-0.0742</td>
<td>0.4839</td>
</tr>
</tbody>
</table>
A la hora de encontrar las impedancias que consiguen implementar dichos valores observamos que B_1 y B_2 varían a izquierda y que B_2 no tiene una variación gradual al ser representadas en la Carta de Smith [5].

Por lo pronto, necesitaríamos 2 varactores para implementar las impedancias que varían a izquierda y además, tendríamos que minimizar las desadaptaciones de B_2.

Este problema es usual cuando se utilizan las redes de Kotzebue en el diseño de VCO de banda ancha. A continuación veremos como modificar el enfoque del análisis podemos hacer uso de un solo varactor de sintonía y además, mejorar otros aspectos del diseño ya mencionados.

Diseño del VCO mediante Red Modificada de Kotzebue

Con este nuevo criterio se pretende reducir el número de varactores a cambio de bajar la potencia entregada a la carga.

La potencia entregada a la malla de realimentación viene dada por:

$$P = \left| g_{m1} + g_{2z}(A_r^2 + A_i^2) + (g_{12}+g_{2z})A_r - (b_{12}-b_{21})A_i \right| |V_s|^{2}$$

si $k=P/P_{\text{min}}$ siendo P_{min} la máxima entregada a la malla expresada por

$$P_{\text{min}} = \frac{4g_{m21} - |Y_{z2}|^2}{4g_{z2}} |V_s|^{2}$$

tenemos que

$$\frac{g_{m1}}{g_{z2}} (k-1) + |A_{m2}|^2 (1-k) = (A_r - A_{r_2})^2 + (A_i - A_{i_2})^2$$

Expresión que representa un conjunto de circunferencias centradas en $(A_{\text{op}} = A_{\text{rop}} + jA_{\text{iop}})$ y de radio proporcional a k. Esto nos va a permitir establecer las pautas de diseño a las que pretendíamos llegar.

De la ecuación anterior observamos:

- Si $k=1$ ($P=P_{\text{min}}$, $A=A_{\text{opt}}$), obtendríamos la red de Kotzebue sin anulaciones dos de las admitancias.
- Si $k<1$ ($P<P_{\text{min}}$) existe un conjunto infinito de valores formando parte de una circunferencia de radio mayor a medida que disminuye k, en definitiva, a medida que disminuimos la potencia (fig.3).

![Circunferencias de Potencia constante.](image)

Fig.3 Circunferencias de Potencia constante.
Para obtener la malla del circuito, actuaríamos de la siguiente forma (fig.4):

- Obtención de parámetros del cuadripolo activo
- Elegimos una potencia (k). Dividimos la circunferencia en un número determinado de puntos. Cada punto determina un valor de A. Con este valor de A, obtenemos una malla de realimentación de las expresiones de oscilación de la fig.1

\[
\begin{array}{ccccccc}
G_1 & G_2 & G_3 & B_1 & B_2 & B_3 \\
1 & 0 & 1-Ar & 0 & 0 & Ar &= & -g_{11} - Re(Ay_{12}) \\
0 & 0 & -Ai & 1 & 0 & 1-Ar &= & -b_{11} - Im(Ay_{12}) \\
0 & Ar & Ar-1 & 0 & -Ai & -Ai &= & -g_{22} - Re(Ay_{22}) \\
0 & Ai & Ar & 0 & Ar & Ar-1 &= & -b_{22} - Im(Ay_{22}) \\
\end{array}
\]

- Este proceso se realizaría para las tres frecuencias de la banda que consideramos. Variaremos el valor de θ (variaremos A y dejamos la potencia constante) y, si fuera preciso, el de k para cada una de las frecuencias, hasta conseguir una malla de realimentación que varía con la frecuencia de forma que pueda ser implementada con, al menos, un solo varicap. Habremos conseguido esto, cuando sólo una de las susceptancias (si sólo deseamos un varicap en la malla) varie a izquierda en la Carta de Smith.

![Diagrama](image)

Fig.4 Combinaciones posibles de A para una combinación de potencias. (Para 90 valores de θ)

Por último, observemos que en las expresiones de oscilación tenemos 4 ecuaciones y 6 incógnitas. Dos de ellas han sido fijadas teniendo en cuenta la disipación admisible en el diseño por G₁ y G₃.

A continuación exponemos los resultados correspondientes al VCO 2-4GHz con NEC 64535 y \(V_{dc} = 2V \).

<table>
<thead>
<tr>
<th>f(GHz)</th>
<th>ISC₁</th>
<th>ISC₂</th>
<th>ISC₃</th>
<th>ISC₄</th>
<th>ISC₅</th>
<th>ISC₆</th>
<th>ISC₇</th>
<th>ISC₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.500</td>
<td>160.967</td>
<td>.068</td>
<td>57.016</td>
<td>3.464</td>
<td>56.767</td>
<td>.409</td>
<td>.45.896</td>
</tr>
<tr>
<td>2.5</td>
<td>.516</td>
<td>150.022</td>
<td>.083</td>
<td>57.291</td>
<td>2.808</td>
<td>46.179</td>
<td>.410</td>
<td>.53.345</td>
</tr>
<tr>
<td>3</td>
<td>.535</td>
<td>140.578</td>
<td>.098</td>
<td>56.458</td>
<td>2.371</td>
<td>36.217</td>
<td>.414</td>
<td>.61.280</td>
</tr>
<tr>
<td>3.5</td>
<td>.556</td>
<td>132.203</td>
<td>.114</td>
<td>54.864</td>
<td>2.060</td>
<td>26.738</td>
<td>.420</td>
<td>.69.466</td>
</tr>
<tr>
<td>4</td>
<td>.578</td>
<td>124.661</td>
<td>.130</td>
<td>52.722</td>
<td>1.827</td>
<td>17.673</td>
<td>.427</td>
<td>.77.765</td>
</tr>
</tbody>
</table>

79
Número de impedancias consideradas \(3 \)

Número de varactores 1 | **Númeropuntos** 90
Rizado máximo de potencia 1 dBm
Potencia disipada en G1 \(-\) dBm
Potencia disipada en G2 \(-\) dBm
\[f_1 \quad f_2 \quad f_3 \]

Potencias máximas (dBm) 21, 10, 16
Tensión (mV) 0.2505, 0.397064, 0.540336
Potencia (dBm) 16, 16, 15
Ángulo (grad.) 268, 320, 56
Nueva

Potencias máximas (dBm) 21, 10, 16
Corriente (mA) 0.021258, 0.022107, 0.0227
Potencia (dBm) 17, 16.5, 16
Ángulo (grad.) 96, 104, 356
Nueva

Conclusiones

Este criterio nos va a permitir obtener diseños que optimicen distintos parámetros del mismo. Hemos visto la posibilidad de optimizar la potencia y rizado dado un número determinado de varactores. Podremos obtener impedancias que varien con la frecuencia de forma que facilitemos su implementación. También podremos conocer la sensibilidad de las impedancias ante una variación del ángulo \(\Theta \) (A), obteniendo así diseños más estables ante variaciones de impedancia.

Referencias

[5] Pablo Dorta Naranjo y Jorge Pérez Martínez, "Diseño y Construcción de un VCO en banda ancha. Cátedra de Microondas-Radar de la ETSIT (UPM)."
DISEÑO DE AMPLIFICADORES REFRIGERADOS DE MICROONDAS

Autores: M. Sierra, M. C. García, A. Becerra

ABSTRACT

Two different amplifiers (on S and X bands) are introduced here. They achieve the lowest equivalent noise figure to the moment. They also have excellent gain and very low input and output reflection levels. They use hybrid MIC technology (FET HEMT devices). To minimize noise, refrigeration to 15 Kelvin is used. CAD tools help making as high gain and stability as possible.

INTRODUCCION

Tanto en aplicaciones de radioastronomía como en algunos sistemas de comunicaciones se trabaja con señales de muy bajo nivel, por lo que la respuesta de ruido y ganancia de los sistemas empleados es crítica. Lo que se presenta aquí son dos diseños (llamados SAMP y XAMP) que, aunque previstos para radioastronomía, pueden emplearse siempre que sean necesarios bajo ruido y alta ganancia.

El destino de los diseños es el de funcionar como primeras etapas de RF en receptores de radioastronomía para la detección de galaxias funcionando como parte de interferómetros de larga línea de base.

Ambos diseños (uno de ellos en banda S, de 2.1 a 2.5 GHz, el otro en banda X, de 8.1 a 8.6 GHz) pretenden aprovechar al máximo las posibilidades de la tecnología MIC híbrida con transistores HEMT enfriados. El nivel de desarrollo en dichos transistores ha permitido arrinconar otros sistemas tradicionalmente más ventajosos en cuanto a temperatura equivalente de ruido como pueden ser los amplificadores paramétricos. Ya los FET de GaAs refrigerados convencionales consiguen igualar las características de aquellos y con la llegada de los HEMT (High Electron Mobility Transistor) se consiguieron mejoras sustanciales tanto en el margen de frecuencias de funcionamiento como en las características de ganancia y ruido [1].

La refrigeración se realiza en una cámara de ciclo cerrado, en la que se consiguen temperaturas de hasta 15 Kelvin.

Se emplean herramientas de CAD para el análisis, modelado y optimización de circuitos para depurar cada uno de los aspectos de diseño, y se consiguen aproximar éstos prácticamente al límite óptimo de características. La principal utilidad empleada es la librería de rutinas FARANT en FORTRAN [5].
SAMP

Se pretende que este amplificador funcione como front-end de la etapa de RF de un receptor de radioastronomía para interferometría de larga línea de base. En concreto, se utilizará en el Centro Astronómico de Yebeis (Guadalajara) que trabaja en este campo en colaboración con el Instituto de Radio Astronomía Milimétrica de Grenoble (Francia).

Las especificaciones de este amplificador son:

- Banda: 2.1 GHz a 2.5 GHz
- Temperatura de ruido: < 10 K
- Ganancia: > 25 dB
- Reflexión de entrada y salida: < -20 dB
- Estabilidad incondicional a todas las frecuencias

Para el diseño de este primer amplificador (SAMP) se ha empleado el procedimiento del NRAO (National Radio Astronomy Observatory, Charlottesville, Virginia) para el diseño de amplificadores en banda L [3][4].

Estructura general

Se ha realizado en tecnología híbrida MIC, empleando transistores y elementos concentrados en el formato chip (resistencias, condensadores y bobinas) y líneas microstrip para las redes de estabilización, adaptación y polarización. Los transistores chip proporcionan menos parásitos y mejor respuesta en frecuencia que los encapsulados.

El conjunto va integrado dentro de una caja de cobre con un baño electrolítico de oro y enfriado a 15 K, con el objeto de reducir al mínimo la temperatura equivalente de ruido del conjunto.

Componentes

Los componentes activos empleados son transistores FET HEMT's del tipo chip FHR02X de Fujitsu o MGFC4404 de Mitsubishi. Estos transistores proporcionan las características adecuadas de ruido, ganancia y estabilidad requeridas para esta aplicación. El modelo para el transistor se obtuvo de [4] y es válido en toda la banda.

Se han empleado sustratos Epsilam-10 (εr=10) que están bien caracterizados tanto a temperatura ambiente como a muy baja [4].

Los elementos concentrados utilizados son del tipo chip. Incluyen efectos de pérdidas y de auto-resonancias. El modelado de los mismos se ha llevado a cabo por su circuito equivalente obtenido de las características del fabricante.

Topología del sistema

Dos etapas son suficientes para obtener unos valores de ganancia adecuados. La estabilización de los dispositivos se realiza emplazando un doble sistema: realimentación inductiva de fuente y resistiva de drenador. La inductancia de fuente se implementa con hilos de bonding. La resistencia de realimentación afecta poco al ruido por estar en drenador y enfriada a 15 K. Ambos elementos, a la vez que estabilizan, están pensados para aproximar la impedancia de fuente de óptimo ruido a la de adaptación conjugada.

La red de entrada adapta a mínimo ruido y mínima reflexión. Está constituida por un transformador λ/4 implementado con línea impresa y una bobina que adapta la parte imaginaria de la impedancia de entrada del transistor. Se eligió una bobina pues es el elemento que da menores pérdidas y mejor comportamiento en frecuencia. La red intermedia ecualiza la ganancia y busca el mínimo ruido de la segunda etapa, empleando líneas impresas. La red de salida busca máxima adaptación.

82
El diseño que se obtiene finalmente es el de la figura 1.

Los resultados de los modelos teóricos por ordenador se muestran en las figuras 2 y 3, para temperatura equivalente de ruido y ganancia respectivamente. Se ha empleado un modelo [2][4] de ruido enfriado que se ha obtenido a partir de múltiples medidas a otras frecuencias y que aporta unos parámetros de ruido que se ajustan bien a la realidad, aunque la temperatura de mínimo ruido es demasiado optimista.

Figura 1

Temperatura de ruido

![Temperatura de ruido](image)

Figura 2

Ganancia

![Ganancia](image)

Figura 3

XAMP

Se presenta el diseño de un amplificador de bajo ruido, criogénicamente refrigerado, en banda X (8.1-8.6 GHz). Este amplificador corresponde a la primera etapa de un receptor de radioastronomía que utiliza una antena Cassegrain de 10 m. de diámetro (Observatorio astronómico de Yebes). La aplicación fundamental de esta banda de frecuencias es la detección de galaxias funcionando como parte de un interferómetro de larga línea de base.

El diseño se basa también en la experiencia de diseño obtenida en el NRAO.

Las especificaciones del amplificador considerado óptimo son:

- Banda de trabajo: de 8.1 a 8.6 Ghz.
- Temperatura de ruido tan baja como sea posible en la frecuencia de interés. En cualquier caso: < 25 K
- Ganancia: > 30 dB.
- Pérdidas de retorno a la entrada y a la salida: > 15 dB.
- Estabilidad incondicional.
- Capacidad de ser enfriado a 15 K.

Estructura general y componentes

Al igual que en el SAMP, se utiliza tecnología híbrida MIC con transistores en formato chip. También se emplean líneas microstrip y elementos concentrados.

Como en el SAMP, se utilizan transistores HEMT del tipo chip FHRO2X de Fujitsu o MGFC4404 de Mitsubishi.
Se ha pensado utilizar líneas microstrip sencilla, sobre CUCLAD.217, de espesor 0.254 mm. y permitividad relativa 2.17.

Topología del sistema

El método de estabilización elegido es el mismo que en el SAMP, es decir, una inductancia serie en la fuente y una resistencia en el drenador. Al igual que en el anterior, aquí también se busca permitir simultáneamente adaptación conjugada y mínimo ruido.

![Figura 4](image_url)

El diseño final consta de tres etapas. La primera tiene una red de entrada que adapta a mínimo ruido, uno de los puntos fundamentales del diseño. La red consta de un transformador λ/4 y una inductancia (L) que se obtiene con los mismos hilos de bonding. Las otras dos etapas se diseñan buscando la mejor ganancia y optimizando los coeficientes de reflexión.

Las capacidades de ajuste (C) permiten modificar algo la impedancia equivalente de los transformadores.

![Figura 5](image_url)

El diseño que se obtiene finalmente es el de la figura 4.

Los resultados que proporcionaron los programas de simulación del circuito para la temperatura de ruido y para la ganancia se muestran en las figuras 5 y 6.

CONCLUSIONES

Los amplificadores presentados, actualmente en fase de montaje, suponen lo más avanzado actualmente en tecnología de amplificadores de bajo nivel de ruido. El uso que se les pretende dar no descarta futuras aplicaciones en otros campos. Se piensa, en próximos diseños, llegar a construir amplificadores basados en esta línea de diseño que cubran bandas mucho mayores. No se descarta tampoco el que avances en la tecnología de los FET HEMT pueda mejorar las prestaciones de ruido y ganancia.

REFERENCIAS

DISEÑO Y MEDIDAS DE UN AMPLIFICADOR REFRIGERADO DE MUY BAJO RUIDO EN BANDA L.

Juan Daniel Gallego *, Alejandro Becerra **, Manuel Sierra Pérez **

* Centro Astronómico de Yebes, Apdo. 148, 19080 Guadalajara.

ABSTRACT

A state of the art low noise cryogenic amplifier for L-band radio astronomy applications is presented. It was implemented in hybrid MIC technology using commercially available chip HEMT transistors. The average noise temperature in the band (1.2-1.8 GHz) is 4.5 K (0.06 dB N.F.) and the minimum is 4 K. The gain is more than 35 dB over the band and good input reflection and stability is achieved. The amplifier is cooled at 15 K using a closed cycle helium refrigerator. The special measuring technique used for accurate cryogenic characterization is briefly described.

INTRODUCCION

Los amplificadores a transistores GaAs FET refrigerados a temperaturas criogénicas fueron empleados en receptores de radioastronomía por primera vez en los años 70 para sustituir a los amplificadores paramétricos [1]. El continuo progreso en la tecnología de dispositivos ha permitido construir amplificadores de ruido cada vez más bajo, a la vez que se aumentaba el margen de frecuencias para el que resultaban ventajosos, de modo que los parámetros quedaron muy pronto obsoletos. La aparición en los últimos años de los nuevos transistores HEMT (High Electron Mobility Transistor) ha supuesto un gran avance. Su empleo supuso disminuir practicamente a la mitad [2] el ruido de los amplificadores criogénicos a transistores. La aparición de estos nuevos dispositivos, junto con los avances en microlitografía que han permitido a los fabricantes a la construcción de transistores con longitudes de puerta inferiores de 0.25 micras, han llevado a la realización de amplificadores de bajo ruido útiles a frecuencias tan altas como 30 GHz, y aún superiores. En los últimos años hemos presenciado la carrera por alcanzar frecuencias cada vez más altas, al mismo tiempo que se desarrollaban nuevos tipos de mezcladores de bajo ruido (uniones SIS) para longitudes de onda milimétricas. Sin embargo, durante este tiempo se ha prestado poca o nula atención al diseño de nuevos amplificadores de muy bajo ruido a frecuencias moderadas que puedieran ser utilizados en la frecuencia intermedia de los nuevos mezcladores. El trabajo que se presenta comenzó con la motivación de llenar este hueco y a la vez ganar experiencia en el diseño, construcción y medida de amplificadores criogénicos con transistores HEMT, con la intención de acometer en el futuro el trabajo a frecuencias más elevadas de interés en radioastronomía.
DISEÑO

El objetivo del diseño fue lograr un amplificador de banda ancha adecuado para ser utilizado en la frecuencia intermedia de los dos tipos de receptores de milimétricas más utilizados actualmente en radioastronomía: mezcladores con diodos Schottky y uniones SIS (Superconductor-Aislante-Superconductor). La tecnología y diseño de los primeros está bien establecida, mientras que los segundos están aún en evolución. Como es sabido, los mezcladores Schottky siempre presentan pérdidas de conversión, que hacen que la contribución del ruido del amplificador de F.I. al ruido total del receptor tenga una gran importancia relativa [3]. Sin embargo, los dispositivos SIS teóricamente pueden presentar ganancia de conversión, aunque por el momento todos los mezcladores de este tipo utilizados en la práctica en radioastronomía presentan pérdidas similares a las obtenidas con dispositivos Schottky. Otra característica importante de los mezcladores SIS usados en la actualidad es la mala adaptación que presentan en la salida de F.I., que obliga a la utilización de aisladores criogénicos, cosa que no sucede necesariamente en los Schottky.

Se trataba de diseñar un amplificador lo más universal posible, que pudiera emplearse con todo tipo de mezcladores. Los criterios de optimización fueron:

* Banda de paso: 1.2-1.8 GHz.
* Temperatura de ruido media lo más baja posible en la banda.
* Ganancia elevada (>35 dB) y plana en la banda de paso.
* Coeficientes de reflexión de entrada y salida bajos.
* Estabilidad incondicional a todas las temperaturas entre 15 y 290 K.

Una descripción detallada del diseño puede ser encontrada en [4], así que solo destacaremos aquí algunos de los puntos más importantes.

Se decidió utilizar transistores tipo chip, pese a las dificultades técnicas que esto supone, para conseguir el mayor ancho de banda posible, a la vez que un buen contacto térmico del transistor con la caja. El análisis del circuito fue realizado con el programa FARANT [5] utilizando el modelo de transistor de Pospieszalsky [6]. La estabilidad incondicional se logra mediante una carga resistiva de Drenador y realimentación inductiva en el terminal de fuente (ver figura 1). Todos los elementos de sintonía son líneas microstrip, salvo una inductancia concentrada que fue necesaria para obtener el ancho de banda deseado, y además permite realizar el ajuste fino del amplificador una vez montado. La elevada ganancia de los dispositivos permite llevar a cabo la optimización a mínimo ruido sólo con los elementos de entrada de la primera etapa. El uso de la realimentación inductiva en el terminal de fuente permite conseguir simultáneamente la adaptación de mínimo ruido y una buena reflexión de entrada [4]. La ecualización de ganancia se lleva a cabo mediante desadaptación selectiva de los circuitos interetapa.

REALIZACION

El amplificador está diseñado para funcionar a una temperatura de unos 15 K (-258°C), lo que obliga a cuidar especialmente la selección de los materiales a utilizar. El circuito de microstrip fue realizado sobre un substrato blando de elevada constante dieléctrica (DUROID 6010.5), con el fin de mantener las dimensiones físicas lo más reducidas posible. Se midió cuidadosamente el valor de la constante dieléctrica a temperaturas criogénicas, observándose un incremento de aproximadamente el 12% al enfriar. Los transistores chip utilizados fueron el modelo MGFC-4404 de Mitshubisi, y fueron pegados directamente a la caja utilizando un pegamento conductor (EPOTEK H20E). Las inductancias L2, L3 y L4 son simplemente hilos de bonding de la longitud adecuada, mientras que la inductancia L1 es una pequeña solenoide de 6 espiras de hilo de 0.1 mm de diámetro, bobinado con un diámetro de 1 mm. El circuito de polarización está diseñado para evitar oscilaciones a frecuencias por debajo de la banda de paso, al mismo tiempo
que protege a los transistores de sobretensiones en caso de fallo en la fuente de alimentación. El conjunto se monta sobre una caja de latón con recubrimiento electroliptico de oro blando para obtener una adecuada adherencia de los hilos de bonding. Existen tres pequeños taladros sobre la tapa, en los que se alojan pequeños diodos LED que iluminan los transistores cuando el amplificador está enfriado para evitar el fenómeno conocido como "congelación de los portadores" [2].

MEDIDA

Uno de los grandes problemas del trabajo con amplificadores criogénicos es la medida del ruido con precisión. Para dar una idea de la magnitud del problema, el error típico de un sistema de medida de figura de ruido automático convencional (HP 8970 S, de Hewlett Packard) es +/- 0.25 dB (+/- 17 K), lo que parece evidentemente insuficiente si se desean medir temperaturas de ruido de unos 4 K.

Para conseguir la precisión adecuada se ha empleado el sistema de la figura 2. Como se puede ver se utiliza por conveniencia un receptor de medida de ruido convencional para el que se han desarrollado programas de control que permiten su empleo con generadores de ruido especiales, así como la calibración de éstos usando patrones adecuados (cargas de calibración de nitrógeno líquido). La clave para conseguir la precisión requerida es la adecuada elección del generador de ruido. En nuestro caso se emplea el método del atenuador enfriado [4],[7], en el que la fuente es un diodo de ruido (HP 346 C) seguido de un atenuador de 15 dB (Narda 4779-15) que es enfriado a temperatura criogénica al igual que el amplificador a medir, y cuya temperatura se monitoriza cuidadosamente por medio de un sensor. El ENR de la fuente compuesta por el diodo de ruido seguido del atenuador se calibra a temperatura ambiente por comparación con el patrón de nitrógeno líquido. La variación del ENR cuando se enfria el atenuador es muy pequeña (< 0.05 dB), y se puede estimar midiendo la variación de atenuación al enfriar, usando un analizador de redes. Se puede demostrar [8] que la precisión de un sistema como el utilizado viene limitada principalmente por la precisión en la medida de la temperatura física del atenuador. En nuestro caso se estima una precisión absoluta en la temperatura de ruido medida de +/- 1 K, aunque la repetitividad de las medidas es mucho mejor (+/- 0.2 K). La medida de temperatura de ruido y ganancia de un amplificador prototipo obtenida por este sistema aparece en la figura 3.

CONCLUSIONES

Como resultado de este trabajo se han conseguido excelentes amplificadores en banda L que pueden ser usados con ventaja sobre anteriores diseños para receptores criogénicos de mezclador Schottky o SIS. En la actualidad se trabaja en la construcción de 25 de ellos para ser utilizados en el interferómetro del Plateau de Bure, operado por el Instituto de Radio Astronomía Milimétrica con sede en Grenoble (Francia). La realización de estos amplificadores ha supuesto el aprendizaje de una tecnología y la adquisición de una experiencia que nos permitirán emprender trabajos similares a frecuencias más elevadas.

AGRADECIMIENTOS

Este trabajo ha sido financiado en parte gracias al proyecto P388/453 de la CICYT.

REFERENCIAS

Figura 1: Esquema del amplificador.
Figura 2: Sistema de medida de ruido utilizado.

Figura 3: Ruido y ganancia de un prototipo de amplificador a una temperatura de 15 K